Edmund Optics®

Knowledge Center

 Verified library of trusted technical resources created by our 240+ global engineers.

Filter
Search Results for: Specialty Mirrors (117)

Schwarz Mirrors

Schwarz Mirrors eliminate stray light using black, engineered fused silica substrates that maintain desired characteristics while absorbing unwanted light.

View Now Add to saved content

Stemmed Mirrors

Mounting flat mirrors by their edges in a kinematic mount imparts stress onto the mirror surface. This results in distortion and reduced quality of the reflected wavefront, which is especially noticeable when using high-quality mirrors. Stemmed mirrors, on the other hand, are mounted from a smaller diameter “stem” protruding from the back of the mirror, resulting in significantly reduced stress on the mirror surface, high stability, and cost reduction and can be used as a replacement for a more expensive and complex kinematic mount and a conventional mirror.

View Now Add to saved content

Optical Mirrors Review

Mirrors are commonly used to fold or compact an optical system.

View Now Add to saved content

Ultrafast Highly-Dispersive Mirrors

Pulse Compression and Dispersion Compensation for Ultrafast Lasers

View Now Add to saved content

How do I clean my mirrors?

View Now Add to saved content

High Reflectivity Mirrors for Laser Applications

The industry standard method for quantifying reflectivity does not tell the whole story

View Now Add to saved content

How do you measure the reflectivity of mirrors with a reflectivity less than 99.5%?

View Now Add to saved content

Highly-Dispersive Ultrafast Mirrors for Dispersion Compensation

Learn how Highly-Dispersive Mirrors compensate for dispersion and compress pulse duration in ultrafast laser systems, which is critical for maximizing performance.

View Now Add to saved content

How are your Off-Axis Parabolic Metal Mirrors manufactured?

View Now Add to saved content

Why do ultrafast highly-dispersive mirrors have such low angles of incidence (AOIs)?

View Now Add to saved content

Schwarz Mirrors – TRENDING IN OPTICS: EPISODE 4

Schwarz Mirrors minimize unwanted stray light using an opaque, engineered fused silica substrate that absorbs light that would otherwise be transmitted.

View Now Add to saved content

If CRDS is more accurate, why isn’t CRDS always used to measure the reflectivity of mirrors?

View Now Add to saved content

I would like to use your Off-Axis Mirror in a laser application with high temperatures. What is the maximum damage threshold and temperature limit these mirrors can withstand?

View Now Add to saved content

High Reflectivity Mirrors for Laser Applications

Edmund Optics' panel of laser optics experts discuss why the industry standard of measuring transmission to infer the reflectivity of high reflectivity laser mirrors doesn’t tell the whole story.

View Now Add to saved content

Optotune Beam Steering Mirrors Demonstration Video

Optotune Beam Steering Mirrors Demonstration Video

View Now Add to saved content

What is the difference between ¼ wave, 1/10 wave, and 1/20 wave mirrors?

View Now Add to saved content

Highly-Dispersive Mirrors

Ultrafast highly-dispersive mirrors are critical for pulse compression and dispersion compensation in ultrafast laser applications, improving system performance.

View Now Add to saved content

TECHSPEC® Nd:YAG Laser Line Mirrors

View Now Add to saved content

Introduction to Adaptive Optics and Deformable Mirrors

Have a question about adaptive optics or deformable mirrors? Learn more on understanding wavefronts, adaptive optics theory, and more at Edmund Optics.

View Now Add to saved content

Roughness of Diamond Turned Off-Axis Parabolic Mirrors

Learn about spatial frequency errors and surface roughness of Single Point Diamond Turned off-axis parabolic mirrors at Edmund Optics.

View Now Add to saved content

Handling and Storing High Power Laser Mirrors

Check out these best practices for handling and storing high power laser mirrors to decrease the risk of damage and increase lifetimes at Edmund Optics.

View Now Add to saved content

Beam manipulation: prisms vs. mirrors

View Now Add to saved content

Simplify laser system design with dichroic filters and mirrors

View Now Add to saved content

Stemmed Mirrors Minimize Mounting Stress and Deformation

View Now Add to saved content

Metallic Mirror Coatings

Want to learn more about metallic mirror coatings? Find information about standard and custom metallic mirror coatings that are available at Edmund Optics.

View Now Add to saved content

Ultrafast Mirrors: The importance of high reflectance and dispersion control in ultrafast optics

View Now Add to saved content

Attosecond extreme ultraviolet lasers demand high-precision multilayer mirrors

View Now Add to saved content

Laser Optics Lab: Beam Expander Configurations & Designs

Laser beam expanders consist of transmissive configurations, with Galilean or Keplerian designs, and reflective configurations, which use a series of mirrors, similar to microscope designs.

View Now Add to saved content

CNC Glass Machining

Computer Numerical Control (CNC) machines used for complex geometry manufacturing are expanding their material capabilities. Learn more at Edmund Optics.

View Now Add to saved content

Spectroscopy and Optics: Laser mirrors: High reflectance is measured best with cavity ring-down spectroscopy

View Now Add to saved content
 
Sales & Expert Advice
 
or view regional numbers
Easy-to-Use
QUOTE TOOL
enter stock numbers to begin